Skip to content

ozzy.fields

This submodule includes functions to analyze field data.

local_maxima_and_zero_crossings §

local_maxima_and_zero_crossings(
    da,
    comoving_var="x1_box",
    transv_var="x2",
    tvar="t",
    transv_range=None,
    transv_irange=None,
    transv_pos=None,
    transv_ipos=None,
    amplitude_mode="noisy",
    expected_wvl=2 * np.pi,
    amplitude_max_for="negative_charge",
)

Find local field maxima and zero crossings in a DataArray.

This function analyzes a field (typically an electric field) to identify local maxima and zero crossings along a specified dimension. It can process the data in different ways depending on whether the field data is noisy or smooth.

Parameters:

Name Type Description Default

da §

DataArray

The data array containing the field to analyze.

required

comoving_var §

str

The name of the coordinate representing the comoving dimension.

'x1_box'

transv_var §

str

The name of the coordinate representing the transverse dimension.

'x2'

tvar §

str

The name of the coordinate representing time.

't'

transv_range §

tuple | list | ndarray

Range of transverse positions to average over, specified as (min, max).

None

transv_irange §

tuple | list | ndarray

Range of transverse indices to average over, specified as (min, max).

None

transv_pos §

float

Specific transverse position to analyze.

None

transv_ipos §

int

Specific transverse index to analyze.

None

amplitude_mode §

str

Method for handling amplitude analysis. Must be either 'noisy' or 'smooth'. For 'noisy' data, a moving window average is applied before analysis.

'noisy'

expected_wvl §

float

Expected wavelength of the oscillations in the field in normalized units (i.e. \(k_p^{-1}\)) used for window sizing.

2 * pi

amplitude_max_for §

str

Specifies which charge sign to find the maximum accelerating amplitude for. Must be either 'negative_charge' or 'positive_charge'.

'negative_charge'

Returns:

Type Description
tuple

A tuple containing two xarray.Dataset objects: - First element: Dataset with zero crossing information - Second element: Dataset with local maxima information

Raises:

Type Description
ValueError

If required coordinates are missing from the DataArray. If invalid options are provided for amplitude_mode or amplitude_max_for. If invalid ranges or positions are specified for transverse selection.

Notes

The function processes data differently based on the amplitude_mode: - For 'noisy' data: Applies a moving window average before analysis - For 'smooth' data: Analyzes the raw data directly

Examples:

Basic usage with default parameters
import xarray as xr
import numpy as np

# Create a sample dataset with a sinusoidal field
x = np.linspace(0, 10*np.pi, 1000)
y = np.linspace(-5, 5, 20)
t = np.array([0.0, 1.0, 2.0])

# Create field data with some noise
field = np.zeros((len(t), len(y), len(x)))
for i in range(len(t)):
    for j in range(len(y)):
        field[i, j, :] = np.sin(x) + 0.1*np.random.randn(len(x))

# Create DataArray
da = xr.DataArray(
    field,
    coords={'t': t, 'x2': y, 'x1_box': x},
    dims=['t', 'x2', 'x1_box']
)

# Find zero crossings and maxima
zeros, maxima = local_maxima_and_zero_crossings(da)

# The returned datasets contain information about zero crossings and maxima
# zeros contains 'zero_crossings' coordinate
# maxima contains 'max_locs' and 'max_vals' coordinates
Using custom parameters for a smooth field
import xarray as xr
import numpy as np

# Create a sample dataset with a clean sinusoidal field
x = np.linspace(0, 10*np.pi, 1000)
y = np.linspace(-5, 5, 20)
t = np.array([0.0, 1.0, 2.0])

# Create clean field data
field = np.zeros((len(t), len(y), len(x)))
for i in range(len(t)):
    for j in range(len(y)):
        field[i, j, :] = np.sin(x)

# Create DataArray
da = xr.DataArray(
    field,
    coords={'t': t, 'x2': y, 'x1_box': x},
    dims=['t', 'x2', 'x1_box']
)

# Find zero crossings and maxima with custom parameters
zeros, maxima = local_maxima_and_zero_crossings(
    da,
    comoving_var="x1_box",
    transv_range=(-2, 2),  # Average over this transverse range
    amplitude_mode="smooth",  # Use smooth mode for clean data
    amplitude_max_for="positive_charge"  # Find positive field amplitude maximum
)

vphi_from_fit §

vphi_from_fit(
    da,
    x_zero,
    xvar="x1_box",
    tvar="t",
    window_len=1.0,
    k=1.0,
    boundary="trim",
    quasistatic_fixed_z=False,
)

Measure the phase (\(\phi\)) and phase velocity (\(v_\phi\)) from stacked lineouts of a wave (waterfall data) by fitting a sinusoidal function to blocks of data.

Parameters:

Name Type Description Default

da §

DataArray

The input xarray.DataArray containing the data to be analyzed.

The data should be two-dimensional: time or propagation distance along one dimension, and a longitudinal coordinate along the other dimension.

required

x_zero §

float

Position along the longitudinal coordinate where the sine should be considered to start, and with respect to which the phase will be measured. For example, a seed position.

required

xvar §

str

The name of the spatial dimension along which to perform the fit. Default is 'x1'.

'x1_box'

tvar §

str

The name of the time or propagation dimension. Default is 't'.

't'

window_len §

float

The length of the window (in units of the plasma wavelength) over which to perform the fit. Default is 1.0.

1.0

k §

float | str

The wavenumber to use in the definition of the window length. If 'fft', the wavenumber will be calculated from the FFT of the data. Default is 1.0.

1.0

boundary §

str

How to handle boundaries when coarsening the data into blocks. One of 'trim', 'pad', or 'drop'. See xarray.DataArray.coarsen.

'trim'

quasistatic_fixed_z §

bool

If True, the phase velocity is calculated assuming a quasistatic approximation with a fixed z-dimension. Default is False.

False

Returns:

Type Description
Dataset

A dataset containing the calculated phase velocity ('vphi'), phase ('phi'), and phase error ('phi_err').